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Abstract. A new method of calculating critical indices from series expansions is given. 
The method involves rational approximation with a denominator chosen so that the effect 
of singularities other than the critical one is minimised. The method suggests that the 
index for the low-temperature spontaneous magnetisation in the spin-4 Ising model may 
be 0.323 0.003 for both BCC and FCC lattices. 

1. Introduction 

The determination of critical indices for king model ferromagnets from low- 
temperature series has proved to be more difficult than the corresponding problem 
in the high-temperature case, although generally more terms are known in the 
low-temperature expansions. The reason for this is the presence of (complex) sin- 
gularities of each thermodynamic function nearer to the origin than the singularity 
associated with the critical point. Pad6 and related methods have been introduced to 
overcome this difficulty, but the results are not completely satisfactory on account of 
the erratic nature of successive estimates. (An explanation of this behaviour is given 
in 02.) Pad6 approximants, as well as other procedures (Guttmann 1969), have 
however produced a reasonably accurate idea of the location of the additional sin- 
gularities, and this information forms the basis for a new method for estimating critical 
indices, particularly in the low-temperature case. An alternative procedure, using 
conformal transformations, has been described by Pearce (1978). 

The new method, which we call the rational approximation method, is based on 
the work of Baume1 et a1 (1981) and involves approximating the function whose 
expansion we are given by the ratio of two polynomials. The denominator is chosen 
to be much larger near the critical point than at the other singularities and the 
numerator is then calculated in the usual Pade manner. The effect is to focus attention 
on the critical point and a smooth, converging sequence of estimates results. 

In 0 2 we discuss Pad6 methods and in 0 3 explain the new method. Some initial 
results from the method are given and analysed in § 4. 

t Supported in part by Natural Sciences and Engineering Research Council Canada. 
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2. Pade methods 

Since Pade approximants were first introduced into the study of critical indices, a 
good deal of progress has been made in understanding their asymptotic behaviour. 
In particular, it seems likely (Nuttall 1980) that most of the poles of high-order 
diagonal or near-diagonal Pad6 approximants to a function with branch points 
approach an appropriate set of minimum capacity containing the branch points. (It 
is assumed that we are expanding about the point at infinity.) The density of poles 
is proportional to the density of charge when the minimum capacity set is a conductor. 

As an example, we have shown in figure 1 the poles of the [12/12] and [14/14] 
Pad6 approximants to the spin-; BCC spontaneous magnetisation I(u), U = 
exp(-4J/kT) using the series given by Sykes et a1 (1965, 1973). The poles are plotted 
in the t plane, t =U-*. The results seem to be consistent with an approach to the 
minimum capacity set containing three points t = t ,  = U, = (0.532 853)-' (correspond- 
ing to the critical point) and t = a, a* ,  a = -1.58 +2.06i. Notice the increase in density 
of poles near these three points which corresponds to the inverse square root behaviour 
of the charge density near an arc end of the set. 

Similar results are obtained for the BCC low-temperature specific heat (actually 
CH/(ln U)*) and susceptibility, indicating that all three functions probably have the 
same branch points. These results are consistent with those of Guttmann (1969). 

A technique that has often been used to determine critical indices is known as the 
dlog Pad6 method (Baker 1961). For example, if near U = U, 

-1 

I ( u ) - ( u  - U J P h ( U ) ,  

..... 
Figure 1. Poles of the [12/12] (marked by a star) and [14/14] (x) Pad6 approximants 
to the BCC spontaneous magnetisation I(u). One spurious pole has been omitted in each 
case. The set of minimum capacity joining a, a* and tc is shown. 



Calculation of critical indices 3235 

then it is expected that Pad6 approximants to I ' / I  will have a pole near uc of residue 
near p. On the basis of recent ideas, we think that, if h ( u )  is analytic near uc, then 
these estimates of p will converge exponentially and most of the remaining poles of 
the approximants will approach a minimum capacity set containing all singularities of 
I except uc. Figure 2 shows the poles of [12/12] and [13/13] to I ' / I .  These poles 
are distributed in much the same way as in figure 1, which suggests that h ( u )  has a 
branch point at or near to uc. In addition the estimates of p do not appear to be 
converging exponentially (Essam and Fisher 1963), which supports the conclusion 
that uc is a confluent or near-confluent singularity of I. The same situation appears 
to apply to the specific heat and susceptibility. 

- 2  

X 

Figure 2. Poles of the [12/12] (marked by a star) and [13/13] (x) Pad6 approximants 
to l ' / I .  Two spurious poles have been omitted from the [12/12]. The set of minimum 
capacity is shown as in figure 1. 

It sometimes occurs that poles of the Pad6 approximant appear nowhere near the 
set of minimum capacity. The location and number of such poles changes in an 
apparently irregular manner as the degree of approximation is increased. Such poles 
are almost cancelled by zeros of the numerator and are often called spurious poles. 
An understanding is now developing about the location of these poles (Nuttall and 
Singh 1977, Nuttall 1982). The asymptotic behaviour of the numerator and 
denominator polynomials is given by the solution of a Hilbert problem, and, if the 
minimum capacity set has more than two branch points, there will be at least one 
spurious pole. The spurious poles appear as the solution of the Jacobi inversion 
problem on the two-sheeted Riemann surface y 2  = X ( t ) ,  where X ( t )  is a polynomial 
whose zeros are the branch points plus other pOints where arcs of the minimum 
capacity set meet. 
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The simplest non-trivial case is when there are three branch points, as could well 
be the situation for the BCC functions discussed above. X ( t )  is of degree four, for 
there is one point where the three arcs of the minimum capacity set meet. The elliptic 
integral of the first kind maps the Riemann surface y = X onto the complex plane 
which may be covered by a grid of period parallelograms. Each parallelogram is a 
copy of the Riemann surface. As n increases the spurious pole of [n/n] moves in 
equal steps along a line in this plane. The corresponding motion in the original plane 
appears to be erratic. Other quantities, such as estimates of p, include a similar erratic 
component. This type of behaviour was first observed by Dumas (1908) and later in 
more general cases by Akhiezer (1960) and Nuttall and Singh (1977). 

Recent work Nuttall (1982) has generalised these ideas to Hermite-Pad6 
approximants, such as those used by Fisher and Au-Yang (1979), and the same erratic 
behaviour, which is smooth if viewed in the correct space, is to be expected. 

3. Rational approximation method 

Let us assume that U, is known from high-temperature analyses. Then the index p 
may be written as g(uc),  where 

g ( u )  = (U - u c ) I ' ( u ) / I ( u ) .  

g ( u )  = Q ( u ) / P ( u )  

We approximate g ( u )  by 

where P ( u )  is a chosen polynomial of degree n and Q ( u )  is a degree-n polynomial 
given by 

Q ( u )  = P ( u ) g ( u )  + O(unL1) .  

As in Baumel er a1 (1981) it is easy to show that 

Q(u,)/P(u,) = p + (2~ip( t , ) ) - '  1 dt' p(r')GW)(t '-  tc)-' (1) 

where 
p ( t )  = t"p(t-'),  G(r) = g ( t - ' ) - P .  

In (l), the integral is taken round any closed contour including the singularities of 
g( t - ' ) ,  assuming, as appears to be the case in this example, that I ( u )  has no zeros in 
the plane cut along the set of minimum capacity S .  

We now choose P ( u )  in such a way that p ( t )  is much larger near t = r, than near 
the other branch points of G(t) .  Thus we could choose p ( t )  to be a Chebychev 
polynomial with the argument linearly transformed so that It1 become a, a* ,  i.e. 
p ( t )  = exp[nq5 ( t ) ]  + exp[-nq5 ( t ) ]  where 

t - R e a  
i I m a  * 

exp [4 ( t ) ]  = x + (xz - I ) ' '~ ,  x=- 

The square root is chosen so that lexp q5 I 2 1. 

the simpler choice 
In fact our argument does not require P ( u )  to be a polynomial, so we have made 

p ( t )  = exp[n4 011. (2) 
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Along the line joining a, a*, lexp4I= 1, and, at t = t o  lexp4)=3.6314. If we 
choose the contour in (1) to surround closely the set of minimum capacity, then for 
larger n the dominant contribution to the integral will come from those values of t’ 
nearest to t,, and we can write 

fc  

Q(u,)/P(u,)-p ==(27rip(tC))-’ dt’p(t’)AG(t’)(t’-t,)-‘ (3) 
d 

where AG is the discontinuity of G across the cut ending at tc, and d C tc. What is 
omitted in (3) decreases exponentially, and in particular, the contribution from branch 
points at or near a,  a* will be negligible in the present case for the higher values of 
n available. (There are 29 terms known in the series for I.) 

If there is no confluent singularity at tc, then G(t) will not be singular there and 
the error in our approximation will decrease exponentially. It is more likely, however, 
that G(t) has a branch point at t = t,. If we suppose that the dominant part of G(t)  
is given by 

G(t) -A(t  - tc)e, t = tc, 

then standard asymptotic analysis (Bender and Orszag 1978) will give 
rc 

-1 Q(u,)/P(u,)-p -AT sin .rr8 5 dt’ e ~ p [ n 4 ’ ( t ~ ) ( t ’ - t ~ ) ] ( t ~ - t ’ ) ~ - ’  

--AT-’r(e) sin r e  (n4’(tc))-e (4) 
as the leading term in the error for large n. 

obtained as a result of using a value &, then 
In practice uc is not known exactly. A straightforward analysis shows that if d is 

O(z7J/Q(uc) = 

so that the effect of a change in uc on our estimate of p is easily determined. Thus, 
in the example discussed above, if U, is increased by 0.0001, the estimate of p for 
n = 27 is increased by a factor 1.0018, less for smaller n. 

4. Results and discussion 

With the method described in § 3 we obtain a sequence of estimates pn for the BCC 
spontaneous magnetisation p which are given in table 1. It is seen that they vary 
much more smoothly than typical Pad6 results. We must extrapolate the sequence 
to n = 00. From (4) we see that, if pn is plotted against n - e ,  the resulting curve should 
approach n =CO linearly, but of course we do not know 8. In figure 3, Pn is plotted 
against n-’ and it is seen that for larger n the resulting curve is remarkably straight 
with a limiting value near p = 0.323. If we have reached the region of validity of the 
asymptotic expansion (4), then this is probably close to the correct value. On the 
other hand, if 8 is not near to 1 and we are still at a stage where other terms must 
be added to (4), then p might have a different value. 

The FCC spontaneous magnetisation can be treated in a similar way. In this case 
Pad6 analysis shows that I ( u )  has four singularities in addition to the critical point at 
U,= 0.66473. We have taken these singularities to be at t = U - *  = -1.6*i, 0.24* 1.8i, 
in agreement with the work of Guttmann (1969). (It is probably just a coincidence 
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Table 1. Estimates Pn for the BCC lattice. 

n P n  

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

0.081 617 397 546 45 
0.137 724 081 103 47 
0.176 298 627 352 45 
0.207 298 118 015 37 
0.232 359 967 295 91 
0.251 360 594 351 03 
0.265 427 338 700 03 
0.275 688 572 084 38 
0.283 137 135 326 81 
0.288 583 646 025 30 
0.292 639 126 268 31 
0.295 733 451 636 29 
0.298 155 855 471 26 
0.300 097 411 238 67 
0.301 685 411 865 97 
0.303 007 478 318 29 
0.304 126 660 742 51 
0.305 090 056 469 96 
0.305 933 477 825 71 
0.306 684 062 306 22 
0.307 361 978 783 32 
0.307 981 798 863 61 
0.308 553 735 702 75 
0.309 084 770 743 71 
0.309 579 629 101 30 

r 2 O  

1 0  310 

0.300 I 
I I , 

0 08 0 06 0 04 0 02 

Figure 3. Values of on for the BCC lattice plotted 
against n -'. 

n-' 

Table 2. Estimates Pn for the FCC lattice. 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

0.155 155 348 787 62 
0.185 804 650 137 40 
0.205 543 925 966 74 
0.218 277 182 833 82 
0.220 202 759 543 50 
0.247 425 305 271 67 
0.259 111 749 755 37 
0.268 761 601 149 90 
0.274 636 790 409 95 
0.279 424 287 765 40 
0.285 171 718 065 67 
0.289 740 781 377 90 
0.293 036 009 195 10 
0.295 544 484 184 01 
0.297 623 068 059 87 
0.299 576 914 295 43 
0.301 109 030 430 28 
0.302 393 723 021 61 
0.303 460 052 100 25 
0.304 354 680 449 08 
0.305 129 928 350 14 
0.305 834 700 777 77 
0.306 450 805 580 95 
0.306 992 933 043 74 
0.307 484 534 285 06 
0.307 950 269 400 46 
0.308 376 575 887 97 
0.308 774 338 883 59 
0.309 148 685 460 35 
0.309 502 359 384 74 
0.309 833 453 917 14 
0.310 150 843 736 46 
0.310450 037 651 87 
0.310 731 184 662 29 
0.310 995 518 762 30 
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L 
P 

-0.310 

- 0.305 

-0.300 

that the uncertainty in our knowledge of these five points is such that we cannot rule 
out the possibility that in the t plane they form the vertices of a regular pentagon. It 
is probably also a coincidence that the corresponding three points for the BCC lattice 
might form an equilateral triangle, which accounts for the fact that the three arms of 
the minimum capacity set are virtually straight lines.) Next we define the set Z in the 
complex f plane to consist of rays joining the origin to the four singularities. In place 
of the definition (2) we now choose p ( t )  = p n ( t )  where p , ( t )  are polynomials orthogonal 
on C, i.e. 

Idtlp, ( t ) p :  0) = a,, 

Away from Z, for large n, it is known (Widom 1969) that these polynomials have the 
behaviour 

lP"(t)l -exp[nWl 
where 4(t)  is a harmonic function which vanishes on Z and approaches ln(t1 at Co. 
Thus, as before, for large n, Ip,(t,)l >>Ipn(t)l ,  t E C ,  and a similar analysis applies. 
However the situation is not now as favourable as before. For n = 39, we find 

p.(tC)( J z bIb&)f'* = 773. 

Results for this method applied to I ( u )  for the FCC spontaneous magnetisation 
are given in table 2. The estimates p,, are plotted against n-' in figure 4. Again we 
observe a linear behaviour for larger n with an apparent limit near p = 0.323. 

In figure 5, Pn for the FCC case is plotted against n-"" and this graph suggests a 
value of p nearer to 0.325. The BCC results are similar. An even higher value would 
be indicated if 8 were less than 0.75. 

++*++ 
I* 

0.325 

E 0.320 
0.310 i p  

1 
0.305 1 

10.300 

~ 0 . 3 2 5  

t 0.3 20 

I I t t 
1 I I I I I I I I I 

0 06 0 04 0 02 0 12 0 08 0 04 

figure 4. Values of Pn for the FCC lattice plotted 
against n -'. against n-"''. 

"-0 75 n- ' 
Figure 5. Values of Pn for the FCC lattice plotted 
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The rational approximation method seems to be superior to methods which have 
previously been applied to the analysis of low-temperature critical indices. There is 
scope for numerous modifications and other applications, including the high- 
temperature case, and work continues. 
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